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Abstract
We investigate propagation of a slow-light soliton in �-type media such as
atomic vapours and Bose–Einstein condensates. We show that the group
velocity of the soliton monotonically decreases with the intensity of the
controlling laser field, which decays exponentially after the laser is switched
off. The shock wave of the vanishing controlling field overtakes the slow
soliton and stops it, while the optical information is recorded in the medium in
the form of spatially localized polarization. In the strongly nonlinear regime
we find an explicit exact solution describing the whole process.

PACS numbers: 05.45.Yv, 42.50.Gy, 03.75.Lm

In this letter we study the interaction of light with a gaseous active medium whose working
energy levels are well approximated by the �-scheme. The model is a very close prototype
for a gas or Bose–Einstein condensate (BEC) of alkali atoms, whose interaction with light is
approximated by the structure of levels of the �-type. Reference [1] uses this model to develop
the theory of electromagnetically induced transparency (EIT). Typically, in experiments [2–7]
the pulses have the length of microseconds, which is much shorter than the coherence lifetime
and longer than the optical relaxation times. We study the problem in the approximation that
the atoms are cooled down to microkelvin temperatures in order to suppress the Doppler shift
and increase the coherence lifetime for the ground levels. The medium is illuminated by two
circularly polarized optical beams co-propagating in the z-direction. One σ−-polarized field is
denoted as a, and the other σ +-polarized field is denoted as b. We introduce two corresponding
Rabi frequencies

�a = 2µaEa

h̄
, �b = 2µbEb

h̄
, (1)
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and study dynamics of the fields within the slowly varying amplitude and phase approximation
(SVEPA). Here µa,b are dipole moments of corresponding transitions in the atom, and Ea,b are
the field amplitudes.

In the interaction picture and within the SVEPA the Hamiltonian H� = H0 + HI

describing the interaction of a three-level atom with the fields is defined as follows,

H0 = −�

2
D, HI = −1

2
(�a|3〉〈1| + �b|3〉〈2|) + h.c., (2)

where D = I − 2|3〉〈3| is a 3 × 3 diagonal matrix. We set h̄ = 1. Dynamics of the fields is
described by the Maxwell equations, which within the SVEPA take the form

∂ζHI = i
ν0

4
[D,ρ] . (3)

Here we have introduced new variables ζ = (z − z0)/c, τ = t − (z − z0)/c, ρ is the density
matrix in the interaction representation, nA is the density of atoms and ε0 is the vacuum
susceptibility. For many experimental situations it is typical that the coupling constants
νa,b = (nA|µa,b|2ωa,b)/ε0 are almost the same. Therefore we assume that νa ≈ νb = ν0.
Together with the Liouville equation,

∂τρ = −i[HI , ρ], (4)

we obtain a system of equations (3), (4), which is exactly solvable in the framework of the
inverse scattering (IS) method [8–11]. Below we explain why for our solutions the influence
of relaxation is negligible. Therefore the relaxations terms are not included in equation (4).

We assume that before arrival of the soliton the atom–field system is prepared in a state
corresponding to a typical experimental setup (see e.g. [2, 3, 5]):

�(0)
a = 0, �

(0)
b = �(τ), |ψat〉 = e−i �

2 τ |1〉. (5)

The state satisfies the Maxwell–Bloch system of equations (3), (4). The field �(τ) plays
the role of the controlling background field generated by a laser. In [11] for the constant
background field �(τ) = �0 = �∗

0 we found the slow-light soliton

�a = −i
√

2ε0�0√
ε0 +

√
ε2

0 − �2
0

sech φs, �b = �0 tanh φs, (6)

and its atomic counterpart. Here φs = ν0ζ

2ε0
− τ

2

(
ε0 −

√
ε2

0 − �2
0

)
+ φ0. This type of solutions

for constant background field was also discussed in [9]; approximative descriptions of pulse
propagation based on the concept of effective time can be found in [5, 12, 14, 15]. In
equation (6), for simplicity we set � = 0, ε0 > �0. The meaning of the parameter ε0 is
explained below. It can be readily seen that the speed of the slow-light soliton sent into
the system depends on the intensity of the controlling background field. In the simplifying

approximation �2
0

ε2
0

� 1, the group velocity reads vg ≈ c
�2

0
2ν0

[11]. This expression immediately

suggests a plausible conjecture that when the controlling field is switched off the soliton stops
propagating while the information borne by the soliton remains in the medium in the form of
an imprinted polarization flip.

In this letter we provide analytical solution substantiating the dynamical mechanism of
the nonlinear control formulated above. We envisage the following dynamics scenario. We
assume that the slow-light soliton is propagating on the background of the constant controlling
field �0 according to the exact solution [11]. Suppose that at the moment in time t = 0 the
laser source of the controlling field is switched off. We assume that after this moment the
background field will exponentially decay with some characteristic rate α. The exponential
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front of the vanishing controlling field will then propagate into the medium, starting from
the point z = z0, where the laser is placed. The state of the quantum system equation (5) is
dark for the controlling field. Therefore the medium is transparent for the spreading front of
the vanishing field, which then propagates with the speed of light, eventually overtaking the
slow-light soliton and stopping it.

To realize the mechanism described above we define the time dependence of �(τ) as
follows:

�(τ) =
{
�0, τ < 0
�0 exp(−ατ), τ � 0.

(7)

This regime of switching the field off is quite realistic. An experimental setup, where the
parameter α becomes experimentally adjustable, can be easily envisaged. Greater values
of α correspond to steeper fronts of the incoming background wave. Developing further
the Darboux–Bäcklund technique of our previous work [11] to treat the case of a time-
dependent background field, we construct the exact analytical single-soliton solution of the
time-dependent problem. For the fields the solutions are

�̃a = (λ∗ − λ)w(τ, λ)√
1 + |w(τ, λ)|2

eiθ̃ s sech φ̃s , �̃b = (λ − λ∗)w(τ, λ)

1 + |w(τ, λ)|2 eφ̃s sech φ̃s − �(τ), (8)

and for the atomic medium

|ψ̃at〉 = e−i �
2 τ

[(
λ∗ − �

|λ − �| −
�̃a exp

(
i
(

ν0ζ

2(λ−�)
− θ̃0

) − z(τ, λ)
)

2|λ − �|w(τ, λ)

)
|1〉

+
�̃a

2|λ − �|w(τ, λ)
|2〉 − �̃a

2|λ − �| |3〉
]

. (9)

The parameters of the slow-light soliton are

φ̃s = φ̃0 − ν0 Im(λ)ζ

2|� − λ|2 + Re(z(τ, λ)) +
1

2
ln(1 + |w(τ, λ)|2),

θ̃ s = θ̃0 − ν0ζ

2
Re

(
1

λ − �

)
+ Im(z(τ, λ)), λ ∈ C.

(10)

We find the functions w, z. For τ < 0 these functions are

w ≡ w0 = �0

λ +
√

λ2 + �0
2
, z(τ, λ) = i

2
�0w0τ, (11)

while for τ � 0 the functions w, z take the form

z(τ, λ) = −αγ τ + ln
CJ−γ

(−�(τ)

2α

)
+ Jγ

(−�(τ)

2α

)
CJ−γ

(−�0
2α

)
+ Jγ

(−�0
2α

) , (12)

w(τ, λ) = i
CJ1−γ

(−�(τ)

2α

) − Jγ−1
(−�(τ)

2α

)
CJ−γ

(−�(τ)

2α

)
+ Jγ

(−�(τ)

2α

) , (13)

where γ = α+iλ
2α

and Jν are Bessel functions. The constant C is uniquely defined by the
condition w(0, λ) = w0,

C = −iw0Jγ

(−�0
2α

)
+ Jγ−1

(−�0
2α

)
J1−γ

(−�0
2α

)
+ iw0J−γ

(−�0
2α

) . (14)

To identify a physically relevant solution we require that w(∞, λ) = 0. This requirement
places a restriction on the parameter λ, such that Im(λ) < 0 and hence Re(γ ) > 1/2.



L180 Letter to the Editor

−4 −2 0 2 4

−4

−2

0

2

4

t

z

Figure 1. The slow-light soliton is stopped [5]. Contour plot of the intensity Ia of the field �̃a .
The parameters used for all the plots in this letter are the same: � = 0,�0 = 2, ε0 = 2.1, ν0 = 10,
α = 1.

It is easy to show that the group velocity of the slow-light soliton reads

vg

c
= |w(τ, λ)|2

ν0(1+|w(τ,λ)|2)
2|�−λ|2 + |w(τ, λ)|2

. (15)

Note that in the case of the constant background field, i.e. in the case α = 0, the conventional
expressions for the slow-light soliton (6) along with the expression for the group velocity—the
main motivational quantity for this letter—can be readily recovered from equations (8), (15).

We also calculate the distance Ls(α) that the slow-light soliton will propagate from the
moment t = 0, when the laser is switched off, until the signal is fully stopped. This distance
is

Ls(α) = 2c|� − λ|2
ν0 Im(λ)

φ̃s |τ=∞
τ=0 = 2c|� − λ|2

ν0|Im(λ)|
[
ln

√
1 + |w0|2 − Re(z(∞, λ))

]
. (16)

It is clear that

z(∞, λ) = ln
C
(−�0

4α

)−γ /
�(1 − γ )

CJ−γ

(−�0
2α

)
+ Jγ

(−�0
2α

) .

Note that Re z(∞, λ) � 0 and hence Ls(α) > 0. The case when the controlling field is
instantly switched off corresponds to the limit α → ∞. In this limit the profile
of the background field approaches the Heaviside step-function, and we find that
limα→∞ Re z(∞, λ) = 0. In this case, as is intuitively evident, the soliton will still propagate
over some finite distance. Note that the limits τ → ∞ and α → ∞ do not commute and the
latter should be taken after the former.

In what follows we assume the parameter λ to be imaginary, i.e. λ = −iε0, with ε0 > �0.
We demonstrate the slow-light dynamics in figure 1, where we show how the slow-light soliton
stops and disappears. In figure 2 we demonstrate the behaviour of the intensity in the channel
b. The groove in the constant background field corresponds to the slow-light soliton. This
groove is complementary to the peak in the channel a. The shock wave, whose front has
an exponential profile, propagates with the speed of light, reaches the slow-light soliton and
stops it. Note that after the collision with the slow-light soliton the front of the shock wave
shows some short peak at a level higher than the background intensity. This effect reflects an
essentially nonlinear nature of interactions inherent to the considered dynamical system. In
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Figure 2. The intensity Ib of the field �̃b as a function of time t and space z. The parameters are
defined in figure 1. The groove corresponds to the slow-light soliton. The soliton collides with the
shock wave of the vanishing control field, whose front has an exponential profile.
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Figure 3. Imprinting the information. We plot the dynamics of the population P1 of the level |1〉
and P2 of the level |2〉 as functions of time t and space z. It is clear that after the collision the
populations freeze.

figure 3 we plot the dynamics of the polarization flip in the atomic medium, which bears the
information and stores it in the medium. Before the shock wave has approached, the spatially
localized population of the level |2〉 moves together with the slow-light soliton as a composite
whole. This is a nonlinear analogue of the dark-state polariton [13]. After the shock wave has
arrived the population is frozen at the position where it was hit by the shock wave.

It is important to note that, before the slow-light soliton is stopped, the population on
the level |2〉 does not reach unity, because there is a remnant population in the upper state
|3〉. However, after the polariton is completely stopped, the level |3〉 depopulates, while the
population of the level |2〉 reaches unity at the maximum of the signal. Before and after
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the collision, the population of the level |1〉 at the minimum of the groove always vanishes.
The result is valid for zero detuning. From our solution (9) it is not difficult to estimate the
maximum population of the level |2〉 for finite detuning after the soliton is completely stopped:
ε2

0

/(
ε2

0 + �2
)
. Any destructive influence of the relaxation processes on the overall picture of

dynamics described above is negligible. Indeed, as we show in this letter (see also [11]), the
population of the upper level |3〉 is proportional to the intensity of the background field �0,
which is required to be small, to ensure a small velocity of the signal. Numerical analysis
shows that analytical solutions given above are stable with respect to relaxation from the
level |3〉. This result concurs with general numerical treatments of storing optical information
reported in [7, 12].

Discussion. In this letter we have investigated the dynamics of a slow-light soliton whose
group velocity explicitly depends on the background (controlling) field. Taking advantage of
an explicit exact solvable example, we demonstrate that the soliton can indeed be stopped,
provided that the background field vanishes. After the signal is stopped, the information borne
by the soliton is imprinted into the medium in the form of a spatially localized polarization
flip. The position of the spatially localized optical memory imprint is controlled by the
experimentally adjustable parameter α. Our approach allows addressing of optical memory
recorded into an atomic medium at an exact location without changing the characteristic size
of the spatial domain occupied by the memory. The imprinted memory can be subsequently
read.
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